Spatial patterns and cell surface clusters in perineuronal nets.
نویسندگان
چکیده
Perineuronal nets (PNN) ensheath GABAergic and glutamatergic synapses on neuronal cell surface in the central nervous system (CNS), have neuroprotective effect in animal models of Alzheimer disease and regulate synaptic plasticity during development and regeneration. Crucial insights were obtained recently concerning molecular composition and physiological importance of PNN but the microstructure of the network remains largely unstudied. Here we used histochemistry, fluorescent microscopy and quantitative image analysis to study the PNN structure in adult mouse and rat neurons from layers IV and VI of the somatosensory cortex. Vast majority of meshes have quadrangle, pentagon or hexagon shape with mean mesh area of 1.29µm(2) in mouse and 1.44µm(2) in rat neurons. We demonstrate two distinct patterns of chondroitin sulfate distribution within a single mesh - with uniform (nonpolar) and node-enriched (polar) distribution of the Wisteria floribunda agglutinin-positive signal. Vertices of the node-enriched pattern match better with local maxima of chondroitin sulfate density as compared to the uniform pattern. PNN is organized into clusters of meshes with distinct morphologies on the neuronal cell surface. Our findings suggest the role for the PNN microstructure in the synaptic transduction and plasticity.
منابع مشابه
Diverse functions of perineuronal nets.
Perineuronal nets represent well-organised components of the extracellular matrix, which are surrounding cell bodies, dendrites, and axon segments of a particular class of neurones as well as forming lattice-like structures. The role of perineuronal nets is not fully elucidated yet. Perineuronal nets may play a beneficial role by stabilizing the extracellular milieu assuring the characteristic ...
متن کاملDistribution of N-Acetylgalactosamine-Positive Perineuronal Nets in the Macaque Brain: Anatomy and Implications
Perineuronal nets (PNNs) are extracellular molecules that form around neurons near the end of critical periods during development. They surround neuronal cell bodies and proximal dendrites. PNNs inhibit the formation of new connections and may concentrate around rapidly firing inhibitory interneurons. Previous work characterized the important role of perineuronal nets in plasticity in the visua...
متن کاملPerineuronal nets protect fast-spiking interneurons against oxidative stress.
A hallmark of schizophrenia pathophysiology is the dysfunction of cortical inhibitory GABA neurons expressing parvalbumin, which are essential for coordinating neuronal synchrony during various sensory and cognitive tasks. The high metabolic requirements of these fast-spiking cells may render them susceptible to redox dysregulation and oxidative stress. Using mice carrying a genetic redox imbal...
متن کاملInvestigation of Sea Surface Temperature (SST) and its spatial changes in Gulf of Oman for the period of 2003 to 2015
Considering the great application of Sea Surface Temperature (SST) in climatic and oceanic investigations, this research deals with the investigation of spatial autocorrelation pattern of SST data obtained from AVHRR sensor for Gulf of Oman from 2003 to 2015 (13 years). To achieve this aim, two important spatial statistics, i.e. global Moran and Anselin local Moran’s I were employed within mont...
متن کاملIn Sickness and in Health: Perineuronal Nets and Synaptic Plasticity in Psychiatric Disorders
Rapidly emerging evidence implicates perineuronal nets (PNNs) and extracellular matrix (ECM) molecules that compose or interact with PNNs, in the pathophysiology of several psychiatric disorders. Studies on schizophrenia, autism spectrum disorders, mood disorders, Alzheimer's disease, and epilepsy point to the involvement of ECM molecules such as chondroitin sulfate proteoglycans, Reelin, and m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain research
دوره 1648 Pt A شماره
صفحات -
تاریخ انتشار 2016